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SUMMARY 

This paper describes a calculation technique to determine the linear instability characteristics of jets of arbitrary 
exit geometry. In particular, elliptic and rectangular jets are considered. The numerical procedure involves both a 
conformal transformation between the computational domain and the physical plane and a solution of the 
transformed stability equation in the computational domain. Modem, efficient, conformal mappings are used for 
both simply and doubly connected domains. The numerical solution is based on a hybrid finite difference/ 
pseudospectral discretization of the stability equation. The technique is validated by comparison with previous 
stability calculations for circular and elliptic jets. Calculations are performed for the stability characteristics of 
elliptic and rectangular jets of aspect ratio 2:l. Growth rates, phase velocities, and pressure eigenfunctions are 
presented. 

1. INTRODUCTION 

This study is motivated by the authors’ interest in turbulent mixing in free shear flows. It is now 
generally acknowledged that the mixing process in turbulent free shear flows is dominated by the 
dynamics of the large scale coherent structures. In addition, the local properties of these structures may 
be modelled by a linearized, inviscid analysis. The ability of a linear model to describe the local 
amplitude and phase variations of the large scale structures has been demonstrated in the experiments 
and analysis of excited free shear layers and jets by Gaster, Kit and Wygnanski’ and Petersen and 
Samet’. Tam and M 0 r 1 - i ~ ~ ’ ~  made use of instability wave models of the large scale structures to predict 
the noise radiation from supersonic shear layers and the development of excited jets. In addition, 
Moms et al.5 and Liou and Morris6 and have developed Reynolds stress closure schemes in 
which the unknown turbulent stresses are described by solutions of the local linear stability 
equation. In these several models a knowledge of the properties of the instability wave leads to 
an understanding of the evolution of the large scale turbulent structures. For example, in the 
case of the supersonic jet noise model, the instability wave growth rate determines the amplitude 
evolution of an instability wave of a particular frequency. The real part of the wavenumber of 
the wave determines its spatial periodicity and phase velocity. If the phase velocity of the wave is 
supersonic with respect to the ambient speed of sound then a very efficient noise radiation called 
Mach wave radiation occurs. 

The present paper is concerned with the instability of jets of arbitrary cross section. This analysis is 
an essential component in the extension of the models and analyses of turbulent flows described above 
to more complex geometries. Non-circular jets have been observed to have enhanced mixing properties 
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compared to circular jets. This makes their use attractive as injectors in combusters or as noise 
reduction devices in supersonic jets. For example, Gutmark et al.7 demonstrated this enhanced 
mixing by the use of an elliptic jet in a dump combuster. In addition, rectangular and non- 
circular jets have applications in thrust vectoring/thrust-reversing engine nozzles for future 
fighter aircraft. 

In this paper a hybrid numerical scheme is developed to calculate the eigenvalues of the spatial 
stability problem associated with jets of arbitrary exit geometry. The computational scheme presented 
here generalizes existing numerical methods for the jet stability problem in the sense that it is 
applicable directly to any non-circular jet exit geometry. Calculations of the stability characteristics of 
non-circular jets have been made previously by several authors. Moms' considered an elliptic jet with 
a mean velocity profile chosen in such a way that the stability equation was separable. Koshigoe and 
Tub i~ '~ '~  also considered an elliptic jet. Their latter paper most closely resembles the present approach 
in that it used a generalized shooting method. However, an integral formulation was used to establish 
the conditions at the edges of the jet shear layer. Also, the discretization in the azimuthal direction 
needed far more points than the spectral approach used in the present scheme. Finally, they only 
considered thin shear layers. Tam and Thies' studied the instability of rectangular jets. They used a 
boundary integral method to consider jets represented by a vortex sheet. The present method is 
applicable to jets with realistic velocity and density profiles. 

The hybrid scheme developed here is used in a study of the stability characteristics of both elliptic 
and rectangular jets. These characteristics are given in the form of the variation of the growth rates and 
phase velocities as a function of the instability wave frequency. In addition, the eigenfunctions for the 
most unstable modes are also shown. The development of the hybrid method is outlined using a model 
partial differential equation which has an exact analytic solution. In general, the hybrid method 
developed here is applicable to linear, elliptic, two-dimensional, partial differential equations of the 
form: 

where a is an unknown eigenvalue, 4 is an unknown eigenfunction, and 
(1) is defined on some planar domain f2 with the boundary conditions: 

is a multi-index. Equation 

4 ( x ,  y)  defined on an (2) 

In the present paper we first develop the hybrid numerical scheme. A generalized Rayleigh equation 
that governs the inviscid, incompressible, spatial stability of arbitrary geometry shear flows is then 
described. Then a model problem is introduced to help in the development and description of the 
numerical solution technique. This scheme is then applied to the generalized Rayleigh equation. 
Finally, calculations are performed for the stability characteristics of elliptic and rectangular jets. 

2. HYBRID NUMERICAL SCHEME 

This section develops a hybrid numerical scheme to solve linear, elliptic eigenvalue problems of the 
form given by equation (1). Hybrid techniques are numerical methods that combine series 
approximations with finite difference calculations. For two-dimensional partial differential equations, 
such as the equation governing the inviscid stability of non-circular jets, hybrid methods generate 
discretization matrices whose order varies linearly with the approximating series summation bound, N .  
This implies that the number of operations required to compute an eigenvalue of equation (1) is 0 ( N 3 ) .  
This estimate is an improvement over the number of operations required by full spectral or 
pseudospectral methods. Such series techniques generate discretization matrices from two-dimensional 
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series approximations whose size is O((N + 1)2).  This implies that such methods require O((N + 1)6) 
operations to compute an eigenvalue for a standard two-dimensional problem. Furthermore, hybrid 
techniques have the advantage of increased accuracy over purely finite difference approaches. The 
accuracy of a hybrid scheme depends on the properties of the approximating series and on the accuracy 
of the finite difference scheme. The present study uses a pseudospectral series and a fourth-order 
Runge-Kutta scheme. The use of a pseudospectral series assumes that the function to be approximated 
is known, or may be computed, on a fixed set of points in the computational domain. This information 
is then used with an appropriate set of basis functions to form a finite series approximating the 
function. The function's approximation on a known set of points defines a grid in the computational 
domain. 

2.1. The Generalized Rayleigh Equation 

Consider a jet flow issuing from a nozzle of arbitrary cross-section. The governing equations will be 
developed in a Cartesian co-ordinate system (x, y ,  z). The axis of the jet is aligned with the z axis and 
the basic axial velocity is denoted by W(x,  y). The mean velocity components in the x and y directions 
are neglected. This is the parallel flow approximation of hydrodynamic stability. If the parallel flow 
approximation is not used and the small effects of the divergence of the basic flow are to be considered, 
the problem may be solved with a multiple-scales analysis (see reference 12). The parallel flow 
solution is then the lowest-order approximation; however, the effects of flow divergence are not 
included in the present study. 

A linear, elliptic, partial differential for the pressure may be obtained by taking the divergence of the 
momentum equation and by use of the equation of continuity. The resulting equation may be linearized 
about the basic flow. The velocity fluctuations are eliminated in favor of the pressure fluctuation using 
the linearized momentum equations. In the resulting equation the coefficients are functions of x and y 
only; thus, a separable solution for the pressure fluctuation p(x ,  y ,  z ,  t )  may be sought in the form, 

where, cr is the axial wavenumber and w is the radian frequency. If solutions of the form (3) are 
substituted into the fluctuation pressure equation it becomes, 

2cr vw . vl; = 0. (A - cr2) iJ  + (4) 

Equation (4) is the non-separable form of the Rayleigh equation for inviscid, incompressible flow. In 
order to determine the fluctuation pressure j3 the boundary conditions must be specified. In the present 
case the pressure fluctuation is required to satisfy, 

l ; + O a s r - + o o  (5) 

l; is finite as r + 0, (6) 

and 

where r is the radial distance from the jet centreline. 
To consider jets of arbitrary geometry, conformal mappings are used to map standard computational 

domains onto realistic jet flow cross sections. Conformal mapping is analytically a very desirable 
technique. Such maps simplify the governing differential equation by generating a diagonal metric 
tensor. Recently, very efficient schemes have been developed to determine the conformal maps from 
standard computational domains onto arbitrary regions in the plane. Wegma~m'~-'~ proposed a scheme 
to compute the conformal maps from canonical domains onto simply and doubly connected regions 
with smooth boundaries. This technique has been applied in the present paper to determine the co- 
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ordinate maps needed for an elliptic jet flow cross-section. For polygonal regions, Trefethenl6.l7 has 
developed an efficient sofiware package, SCPACK, to determine the conformal map and its inverse 
from the interior of a polygon onto the unit disc. In the present study, SCPACK has been applied to 
determine the conformal maps needed in the study of a rectangular jet flow cross section. The details of 
the conformal grid generation techniques are given by Baty18. To apply conformal maps, the Rayleigh 
problem must be recast in general conformal co-ordinates. Let Cartesian co-ordinates be denoted by 
(x' , A?), and let the computational co-ordinates be denoted by b l ,  9). Now, let f denote a conformal 
map satisfying the relations, 

x1 = R e { f ( y l  + iy' )I 

1 = ~ m ( f ( j . ~ '  + iy' 11. 

(7) 
and 

(8) 
If equations (7) and (8), the Cauchy-Riemann equations, and the general tensor form of equation (4) 

are used, the generalized Rayleigh equation in terms of (j.J' ,9) may be written 

where 

2.2. The todel Pro lem 

2a vw. v j  = 0,  ( A  - &t2)j + ~ 

0 - N W  (9) 

To facilitate the development of a numerical scheme to solve eigenvalue problems of the form (1) 
and (10) a model problem with an exact solution has been used. Consider the following partial 
differential equation: 

A 4 - 2 a w  (:: -+- :) + 2 u 2 4 = 0  

defined on the set Q, 

with the boundary conditions 

$=(I on 3Q. 

In equation (1 1) a represents a complex parameter and o is a fixed real parameter analogous to the 
wavenumber and frequency respectively in the Rayleigh equations (4) or (9). The main difference 
between the model equation and the Rayleigh equation is that the former has constant coefficients. 
This yields a simple separable solution of the form, 

where 

sin (inkt)  k is even, 

cos ($5) k is odd. I *dt> = (15) 



THE INSTABILITY OF JETS 767 

Here, represents either x or y. Furthermore, the exact dispersion relationship is given by 

(n2 + m2)$ 
f o r n , m = 1 , 2 , 3  , . . .  d 8(m2 - 1) 

a = f i  

The results from the numerical method developed below to solve this model eigenvalue problem will 
be compared to the first three distinct eigenvalues computed from equation (16), for the frequency, 
0 = 2.0. 

a1 = fOe9068996i, 
012 = f1.4339343i, 
a3 = 3~1.81379931. 

2.3. Numerical Solution of the Model Problem 

The hybrid method presented here is defined using a pseudospectral series based on the Chebyshev 
polynomials. The details of the pseudospectral technique for a one-dimensional problem are given by 
Voigt et ~ 1 . ' ~  To outline the method, consider the model equation (1 1 ). Assume that the function 
to be approximated may be represented in a series of the form: 

N 
4(x$ .Y> x C ai(y)f;(x). 

i=O 

in equation (18), the coefficients ai(y), are fictions of the grid points defined by 

xj = cos (nj/N) for j = 0, 1 ,2 ,  . . . , N .  (19) 

Moreover, the basis functions, fi', are rational functions defined by 

(1 -x)Tk(x)(-l)'+' 
c~N'(x - xi )  

A(x)  = 

with 

CO = CN = 2 (21) 

cj = 1 otherwise. (22) 

and 

Here, T h ( x )  is the derivative of the Nth order Chebyshev polynomial. The evaluation of equation (20) 
at the grid points leads to the relation: 

f;(xj)  = Sij, (23) 

where 6, is the Kronecker delta. Equation (23) is the result that allows the pseudospectral method to 
discretize a given boundary value problem efficiently. Next, if equation (18) is substituted into the 
model partial differential equation (1 l), we obtain: 

i = O  
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where primes denote ordinary derivatives. To simplify this equation, the derivatives of the 
approximating basis functions at the grid points must be determined. Voigt et a1.I9 gives these 
derivatives as: 

where 

I - l j  (D  )j = 
2(1 - l;) ' 

and 

(DP) = (D')P. (29) 
Now, if equations (25)-(29), are used in equation (24) a system of linear, second-order ordinary 
differential equations in terms of the coefficients is produced: 

Equation (30) is then recast as a first-order system. This system of first order equations can then be 
recast as a matrix equation with the unknown vector being the coefficients of the approximating series. 
The resulting matrix equation may be integrated once the boundary conditions are determined. In the 
pseudospectral direction, x, the boundary conditions are applied easily as they determine the values of 
the first and last coefficients in the series (18). The model eigenvalue problem has homogeneous 
boundary conditions that require that these coefficients in the approximating series are zero. In the 
finite difference direction, however, the boundary value problem is recast as an initial value problem in 
order to apply an explicit integration scheme. The boundary conditions are recast using a generalized 
shooting technique. Another example of such a method is given by Koshigoe et a/.'' in which an 
integral method is used to specify the conditions on the boundaries. The shooting technique is 
constructed by the introduction of the following initial conditions: 

a N  
- ai@)A(xj) [ = 1 for each j ,  
@ i=o y=-1 

a;(-I) = 0. (32) 

The system of ordinary differential equations is then integrated to the boundary defined by y = 1 in the 
computational domain for each initial condition given in equations (31) and (32). The solution on 
y = 1 is then given by a linear sum of the integrated solutions: 
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where the integrated solutions are denoted by V(xi)  and the unknown coefficients by Ri. If the 
boundary condition at y = 1 is applied, that is, 

m, 1) = 0, (34) 

a system of homogeneous simultaneous equations for the Ri is obtained. For a non-trivial solution for 
the coefficients Ri the determinant of the coefficient matrix must be zero, that is 

det[V(xl), . * * , ~ ( X N - I ) ]  = 0. (35) 

Recall that this matrix is an implicit function of the wave number, 01. Only when c1 is an eigenvalue will 
equation (35) be satisfied. To determine the eigenvalues a local Newton-Raphson scheme is applied. 
All the numerical experiments have been performed using a fourth-order, Runge-Kutta integration 
scheme with various step sizes. The numerical results given in this section are for a step size 

The hybrid method has been used to compute the first three distinct eigenvalues for the model 
problem with w = 2.0. Table I shows the absolute errors for these eigenvalues. The numerical results 
show that the hybrid method works well in the approximation of the eigenvalues for the model 
problem. It is clear from Table I that to achieve a certain absolute level of accuracy for the higher 
eigenvalues a higher order spectral approximation is required. This is because the higher order 
eigensolutions are more oscillatory. Fortunately in the primary problem of interest, the jet stability 
problem, only the lowest order modes dominate the unsteady flow structure. 

Ay = 0.02. 

2.4. Discretization of the Generalized Rayleigh Problem 

The discretization of the generalized Rayleigh problem follows the steps used for the model 
problem. Equation (1 8) is substituted into equation (9) and then equations (23) and equations (25-29) 
are used to generate a system of linear, second order ordinary differential equations in terms of the 
series coefficients: 

Equation (36) is then recast as a matrix equation with the unknown vector containing the 
pseudospectral coefficients. The resulting matrix equation may be integrated once the boundary 
conditions are determined. In the region outside the jet mixing layer the velocity is taken to be zero. 
Then the Rayleigh equation reduces to the Helmholtz equation: 

(A - iu')? = 0. (37) 

Table I. Absolute errors in the first three eigenvalues of the 
model problem 

N Abs. error 1 Abs. error 2 Abs. error 3 

5 1 ' 1 O(-2) 5.82(- 1 )  1.57(-1) 
7 5.18(-5) 1.59(-3) 1.02(- 1) 
8 2.02(-5) 5.64(-4) 2.81(-2) 
9 7.45( -7) 2.4 1 (-5) 6.28(-3) 
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I c  I D  

Figure 1. Sketch of the four classes of instability waves for elliptic and rectangular jets. A-D correspond to equations (40H43) 

The general solution to equation (37) in polar co-ordinates that satisfies the boundary condition (5) 
may be written: 

w 
F(r, e )  = C AnH,('f(iar) exp(ine), 

n=O 

where, H i ' )  is the Hankel function of the first kind and order n. Moreover, since the pressure 
fluctuation must be bounded as Y -+ 0, then in the jet potential core it satisfies: 

w 
j (Y, 0 )  1 c B, Jn(i ctr) exp (in e), 

n=O 
(39) 

where J, is the Bessel function of the first kind. This form of solution is appropriate in the annular jet 
mixing region upstream of the end of the jet potential core. Downstream of the potential core the 
solution on the jet centreline may be obtained from a Frobenius solution. 

If the jet basic flow possesses any symmetries it is possible to classify the instabilities in a more 
specific way. For example, if the jet basic flow is symmetric about its major and minor axes, as would 
be the case for the elliptic and rectangular jets considered here, there are four classes of possible 
azimuthal pressure solutions. These four classes of solutions are shown schematically in Figure 1 for 
an elliptic jet. The infinite series describing these solutions may be written, 

00 c A ,  Cn(icrr) cos(2n O ) ,  
n=O 

w 
C A n C n ( i a r )  sin[(2n+ l)O], 
n=O 

w 
CA,C,(icrr) sin[(2m +2)8] ,  
n=O 

w 
CA,Cn( iUr)  C O S [ ( ~ ~  + l)8],  (43) 

n=O 

where C, represents either J, or H:'). The azimuthal symmetries shown in Figure 1 correspond to the 
equations (4043), respectively. Since the jet basic flow is assumed to be symmetric about both the 
major and minor axes the computation may be restricted to the first quadrant in the physical plane. The 
standard computational domain for this physical region is taken to be a rectangle. On the upper and 
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Lomr Edge of Computational Domain (Jet Potential Core w) 
Figure 2. Example computational domain for the summation bound N = 8. The upper and lower edges of the computational 
domain correspond to the mean jet boundaries. The vertical lines correspond to the grid points for the pseudospectral 

approximation 

lower edges of this domain that correspond to constant radial locations, the solutions take the forms 
given by equations (40)-(43). Before these boundary conditions are evaluated in the computational 
space they are transformed using the metric generated by the conformal mapping. On the side edges of 
the computational domain that represent the jets positive minor and major axes, the boundary 
conditions are determined by the symmetry conditions as sketched in Figure 1. If the pressure is odd 
about an axis the boundary condition may be written 

j = 0, 

and if the fluctuation is even about an axis the boundary condition may be written 

ai,  
a e  - = 0. 

(44) 

(45) 

The set of equations for the unknown series coefficients, equation (36), may be integrated explicitly 
in the radial direction once the boundary conditions have been converted into the appropriate initial 
conditions. The boundary conditions on the top and bottom edges of the computational domain are 
changed into initial conditions using the generalized shooting method as in the model problem. Let N 
denote the summation bound for the approximating series. Then there are N - 1 interior grid points in 
the ‘azimuthal’ y’ direction. Figure 2 shows a sketch of a computational domain for N = 8. In this 
figure, the horizontal direction represents an azimuthal variation in the jet and the vertical direction 
represents the radial direction. On the lower edge of the computational domain, the first term and its 
derivative from the exact series solution as given by equation (39) are evaluated at the grid points. In 
Figure 2 these grid points are at the lower ends of the vertical lines. These values are used as the initial 
conditions on the lower boundary. The matrix containing the system of differential equations is then 
integrated to the geometric centre of the computational domain yc,  yielding V:, where 

where a;( yc) denotes the value of the j-th coefficient on the line xk at the position yc. At each step in 
the explicit integration procedure the boundary conditions on the vertical edges of the computational 
domain are satisfied by solving for the first and last coefficients of the approximating series or its 
derivative. 

On the upper edge of the computational domain, the first term in the exact series solution (38) and 
its derivative are evaluated at the grid points. The matrix containing the system of differential equations 
is then integrated to the centre computational domain, producing V;l. This process of evaluating a term 
and its derivative from the exact series solution on the boundaries is repeated for each interior grid line 
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using N - 1 terms from the exact series solutions on the horizontal edges of the computational 
domain. The resulting integrated solutions and their derivatives are then matched at the center of the 
domain. The matching is accomplished by requiring that a linear combination of the 2(N - 1) 
solutions be equated to zero: 

For equation (47) to have a non-trivial solution the determinant of the matrix of integrated solutions 
must be zero. Recall that the solution vectors are implicit functions of a fixed real frequency and some 
complex wavenumber u. A Newton-Raphson scheme is used to locate the wavenumbers at which the 
determinant is zero. 

Once the eigenvalue of the Rayleigh problem has been computed, its corresponding eigenfunction 
may be calculated. The hybrid method computes the linear solutions Vy and Vl as it integrates from 
the upper and lower edges of the shear layer to its geometric centre. However, the relative weights of 
the integrated solutions Ri and Si are not known. These coefficients may be found by writing equation 
(47) in the form, 

(vy, Vi)( ;;) = 0. 

The coefficients are obtained by the inverse interpolation method, Stew&'. The generalized Rayleigh 
equation is then integrated a final time using the scaled initial conditions and the pseudospectral 
amplitudes, ai(y), are stored along each radial grid line. Thus, the eigenfunction is approximated 
discretely in the radial direction, and by a series in the azimuthal direction. 

2.5. The Mean Velocity Profile 

In general, if the mean velocity profile W(x',?)  is known in the physical co-ordinates, the 
conformal map may be used to describe the velociiy profile and its derivatives in the computational 
plane. In the present calculations, for convenience, the mean velocity profile has been assumed to be a 
function of? alone. This is the case for axisymmetric jets or for the elliptic jets considered by Morris' 
in which the mean velocity was assumed to be only a function of the 'radial co-ordinate' in an elliptic 
cylindncal co-ordinate system. In this case the velocity profiles were in reasonable agreement with 
experiments for thin shear layers. 

The jet mean velocity profile used in the present calculations is based on a generalization of the 
profile given by Michalke2* for a circular jet. This profile may be written, 

where R is the jet exit radius, 8 is the momentum thickness and 6 is chosen such that 

tanh (6/48) 2: 1. (50) 

For the present calculations the velocity profile in the computational domain is chosen to be 
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where 
momentum thickness on the minor axis, and 2 is chosen such that 

is the location of the half-velocity point, B is the length of the jet exit minor axis, OE is the 

The momentum thickness on the minor axis is defined by 

The choice of the constant b in equation (51) is arbitrary and f (b + i 2 )  is defined by equations (8) 
and (1 0). 

As an example consider the map, 

f b’ + iJ) = a cos b’ + iy2). (54) 

Then, with b = n/2, we obtain, 

This corresponds to the velocity profile used by Morris* to describe an elliptic jet. In this case it is 
readily shown that equations (53) and (55) are consistent if the condition (52) is satisfied. The solutions 
of the Rayleigh equation for velocity profiles of the form defined in this section are described next. 

3. NUMERICAL RESULTS 

In this section numerical solutions of the generalized Rayleigh equation are presented. Calculations are 
performed for the stability of jets with rectangular and elliptic mixing regions. The instability growth 
rates are determined for the varicose and flapping instabilities. The varicose mode is described by 
equation (40). It is even about both the jet’s major and minor axes. The flapping mode is described by 
equation (41) and is odd about the major axis and even about the minor axis. Experiments have shown 
that these modes dominate the unsteady flow structure in elliptic and rectangular jets. As the jet Mach 
number increases, so the flapping mode becomes predominant. Examples of the eigenfunctions are 
also shown. To validate the numerical method, calculations are presented first for round and elliptic jets 
for which previous results have been obtained. For all the calculations shown, the Rayleigh equation is 
non-dimensionalized with respect to the jet exit mean velocity and static pressure and the jet’s 
equivalent diameter. 

3.1. Validation of the numerical method 

The stability code has been validated numerically for several different geometries and boundary 
conditions. In the simplest check the generalized Rayleigh problem is reduced to the form of the model 
problem analysed in section 2.2. In this test the stability code reproduced exactly the error results 
exhibited in Table I. 

The next series of numerical tests involves the calculation of the most unstable eigensolutions for the 
flapping and varicose instabilities of incompressible circular and elliptic jets. These calculations are 
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Table 11. Comparison of present calculations for a circular jet with Moms' for 
an elliptic jet with aspect ratio AIB = 1.001. 

Mode Frequency, w UP ab % Error 

V 5.441 10.207- 5.6871 10.199- 5.6851 0.07 
F A  5.453 10.244 - 5.652i 10.238 - 5.6491 0.06 
F B  5.456 10.253-5.652i 10.243-5.651i 0.08 

compared with those of Morris'. A relative error is introduced, defined by 

x 100, 1 %  - 4 %Error = 
lxbl 

where ap is the present result and ffb is taken from Moms'. For the circular jet case, a complex 
exponential map is used to generate the grid for the generalized Rayleigh problem. The mean velocity 
profile used in this computation is given by equation (49). In all the test cases the momentum thickness 
on the major axis, 0.4, was taken to be 0.02 as in Moms'. Also, as shown by Moms', for small 
momentum thicknesses and the velocity profile (5 l), Ai9A 2i BOB, where A and B are the jet semi-major 
and semi-minor axes respectively. Finally, the boundaries of the computational domain are chosen such 
that 

0.001 5 W 5 0.999 

Table I1 compares the eigenvalues computed with the present hybrid technique for the circular jet 
case with those of Moms' for an elliptic jet with aspect ratio A / B  = 1.001. In Table I1 FA and Fs 
represent the modes flapping about the major and minor axes respectively and V represents the 
varicose mode. The present results are nearly independent of the number of collocation points in the 
azimuthal direction. This behaviour is expected because of the axisymmetry of the circular jet. In this 
case, the Runge-Kutta scheme uses a step size of 0.004 in the 3 direction. 

For the confocal elliptic jet test case (the mean velocity is constant along azimuthal co-ordinate 
lines in an elliptic cylindrical co-ordinate system) a complex cosine hnction is used to determine the 
computational grid. This transformation generates elliptic cylindncal co-ordinates in the physical 
plane. An aspect ratio, A / B  = 2 elliptic shear layer has been considered. The mean velocity profile 
in this case is given by equation (55). Table I11 compares the present results obtained using the 
hybrid method with those of Morris'. A step size of 0.006 is used in the 3 direction. 7 interior 
collocation points are used in the y' direction. If less than four interior collocation points are used, 
the calculated eigenvalues exhibit large errors. Conversely, if more than nine interior collocation 
points are used it becomes very difficult to isolate individual eigenvalues due to their close packing 
in the wavenumber plane for the test conditions. The addition of more interior collocation points to 
the computation affects two distinct limiting processes. First, the approximation of the eigenfunction 

(57) 

Table 111. Comparison of present calculations for a elliptic jet of aspect ratio 
AIB = 2.0 with Morris' 

Mode Frequency, w UP ab % Error 

V 5.657 10.156 - 4.4961 10.135 -4.507i 0.21 
F A  5.010 9.307 - 3.664i 9.322 - 3.6671 0.19 
F B  5.657 10.045 -4.4721 10.027-4.507i 0.35 
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Table IV Eigenvalues used in the circular jet 
eigenfunction calculations 

Mode Frequency, o tlp 

V 5.44 10.20- S68i 
F A  5.45 10.24-5651 

becomes more accurate as more geometric information about the physical domain is supplied to the 
approximation. Second, the functions that define the boundary conditions on the edges of the shear 
layer become more accurate through the inclusion of terms that fluctuate more rapidly in the 
azimuthal direction. It is believed that the addition of these rapidly fluctuating terms leads to a 
determinant minimization problem that is ill-conditioned. Presently, this represents the major 
difficulty found in the use of the hybrid method for the solution of the Rayleigh problem. It should 
be noted that after these calculations were completed an error was detected in the high-order Bessel 
function routines. This may have led to the difficulty in obtaining convergence for a large number of 
interior points. However, no additional calculations have been performed as it is primarily the low 
order eigensolutions that are of interest. 

As noted previously, the eigenfunction associated with a given eigenvalue may also be determined 
with the inverse interpolation method. Recall that in the present formulation the eigenfunctions 
correspond to the pressure fluctuation. All the other fluctuation quantities may be related to the 
pressure fluctuation and its derivatives. Thus, once the pressure eigenfunction is determined the 
distributions of the velocity components associated with the instability wave may also be found. 

As a verification of the eigenfunction calculation technique, the eigenfunctions for the varicose 
(axisymmetric) and flapping (helical) modes of the circular jet have been calculated. The 
corresponding eigenvalues are given in Table IV Contour plots of the real part of the eigenfunctions 
are shown in Figures 3 and 4. These plots present only the qualitative shape of the pressure field as the 
amplitude in the present linear analysis is arbitrary. For the varicose mode the amplitude and phase of 
the eigenfunction are constant along lines of constant radius. For the flapping mode, the amplitude is 
constant and the phase is equal to the azimuthal angle. 
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Figure 3. Iso-pressure contours for the varicose mode, V .  Circular jet case. For eigenvalues see Table IV 
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Figure 6. Variation of the phase velocity as a function of frequency for the elliptic non-confocal jet of aspect ratio 2: 1. Varicose 

mode, V 
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3.2. Elliptic and Rectangular Jet Stability Calculations 

As examples of the application of the hybrid method to more general problems than those treated in 
the previous section, non-confocal elliptic and rectangular jet shear layers have been considered. Both 
shear layers are defined such that the semi-major and semi-minor axes, A and B respectively, satisfy, 

A /B=2  and f i = 1  (58 )  

In addition, both jet shear layers are described by the hyperbolic tangent mean velocity profile given 
by equation (51). A constant momentum thickness in the computational plane of 0.02 is assumed in all 
the calculations. In the physical plane this results in a non-uniform azimuthal variation in the 
momentum thickness: the momentum thickness on the major axis being greater than that on the minor 
axis. This corresponds to the velocity profiles measured by Baty et ~ 1 . ~ ~  for an aspect ratio 2:l 
elliptic, supersonic jet. 

For the shear layers considered, the hybrid method used both 5 and 7 interior collocation points. The 
difference between the eigenvalues for these two choices was typically in the third or fourth significant 
figure. All the calculations for the elliptic shear layer were based on seven interior collocation points. 
Figure 5 shows the variation of the axial growth rate as a hnction of frequency for the varicose mode 
of the elliptic jet. The maximum growth rate is slightly lower than that determined for the confocal 
elliptic shear layer: see Table 111. The variation of the phase velocity, defined by w/an for this case is 
shown in Figure 6 for the varicose mode. This result is typical of all the calculations for both the 
varicose and flapping instabilities in the elliptic and rectangular cases. For the varicose instability there 
is generally a slight decrease in the phase velocity at low frequencies. However, in all the cases 
considered, the phase velocities of the instability waves are approximately 60 per cent of the centreline 
velocity. These results are consistent with those of Koshigoe and T u b i ~ ~ , ' ~ .  To determine the most 
unstable mode the three largest growth rates were interpolated using a second order polynomial. Table 
V shows the frequencies for the maximum growth rates for this elliptic jet. 

Figure 7 shows the variation of the axial growth rate as a function of frequency for the varicose 
mode of an aspect ratio 2: 1 rectangular jet. The maximum growth rate is much lower than that for the 
elliptic jet. In addition, the frequency for the maximum growth rate is also reduced. Table VI shows the 
frequencies for the maximum growth rates for both the varicose and flapping instabilities. This 
frequency gives an indication of the initial vortex shedding frequency for the jet. The calculated 
reduction in this frequency for the rectangular jet could be due to either the change in the geometry or 
to the distribution of the momentum thickness around the jet. 

As a final calculation we consider the pressure eigenfimctions for the elliptic and rectangular jets. 
Figure 8 shows the iso-pressure contours for the most unstable varicose instability in the elliptic jet and 
Figure 9 shows the corresponding contours in the rectangular jet case. As in the circular jet case the 
amplitude of the eigenfunctions is arbitrary. In Figures 8 and 9 the solid contours represent positive 
pressure fluctuations, while the dotted contours represent negative pressure fluctuations. The solid and 
dotted contours overlap on the zero pressure contour lines. The most notable feature in both figures is 
the apparent lack of uniformity, compared to the circular jet contours shown above. Very similar 

Table V Most unstable frequencies and wavenumbers 
for the non-confocal elliptic jet shear layer 

Mode Frequency, w %J 
V 4.49 7.86- 3.50i 
F A  4.16 7.75 -2.95i 
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Table VI. Most unstable frequencies and wavenumbers 
for the rectangular jet shear layer 

Mode Frequency, o UP 

V 3.16 5.71 - 1.92i 
F A  2.90 5.46- 1.98i 

distributions are found for the flapping modes so they are not shown here. Recent calculations by Tam 
and Thies’ ’ for a rectangular jet represented by a vortex sheet have shown that the instability modes 
may be classified into four symmetry types as discussed in this paper. In addition, they showed the 
existence of ‘comer’ and ‘centre’ modes. The former are isolated near the comers of the rectangular jet 
shear layer while the latter have their greatest fluctuations along the edges of the jet. Tam and Thies 
speculated that, for finite shear layer thickness, the ‘centre’ modes would dominate. Thus the present 
modes would likely be of this class. Though this is not immediately obvious from the pressure 
contours, this is not the case for the contours of equal Reynolds stresses and their gradients. In the 
rectangular jet case the distributions indicate that the jet is developing initially as two independent two- 
dimensional shear layers aligned along the jet’s sides. However, in the elliptic jet case there is a 
continuous variation from the major to the minor axes with the dominant fluctuations, for the modes 
considered here being close to the major axis. Further details are given by Baty.18 

4. CONCLUSIONS 

This paper has presented a new calculation procedure to compute the eigenvalues and eigenfunctions 
of two-dimensional partial differential equations of the form given by equation (1). This calculation 
procedure, the hybrid scheme, has been used to analyse the spatial stability of jets of arbitrary exit 
geometry. Calculations have been performed for round, elliptic, and rectangular jets. Examples of the 
eigenvalues and eigenfunctions for the fluctuating pressure associated with the instability waves in 
these jets have been presented. The hybrid scheme yielded very good results for both a model problem 
and benchmark jet stability problems. All the calculations presented here have considered 
incompressible jets. Compressible flow cases are a simple extension of the present work and 
examples for the compressible case are given by Baty et aZ.22 

For the non-circular jet stability calculations considered here, conformal maps have been used to 
carry standard computational domains onto realistic jet cross sections. However, the hybrid numerical 
scheme does not depend on the use of conformal maps. For non-circular jets in which the conformal 
maps are not known or difficult to compute, standard two-dimensional grid generation methods may be 
applied to determine the necessary co-ordinate transformations. The use of such transformations would 
require that the Rayleigh equation be developed for metric tensors that have non-zero off-diagonal 
terms. 

It is possible that further improvements in computer time and robustness could be achieved if the 
analytical solutions at the boundaries of the computational domain were written in a more natural co- 
ordinate system. For example, Morris24 used elliptic cylindrical co-ordinates and wrote the analytic 
solutions in terms of Mathieu and modified Mathieu functions. It was found that very few terms in the 
series representation were then needed to obtain accurate eigenvalues. This suggests that fewer interior 
collocation points would be needed in the hybrid method presented here to achieve the same level of 
accuracy. 

Once the fluctuating pressure is computed from the Rayleigh equation, the fluctuating velocity 
components may be obtained using the linearized equations of continuity and momentum. In turn, this 
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enables the second-order statistics, including the normal and shear stresses, associated with the 
instability waves to be calculated. If it is argued that the mixing process in free shear flows is 
dominated by large scale structures and that, locally, they may be modeled as instability waves, these 
second-order statistics are all that is needed to provide a turbulence closure scheme. Such turbulence 
models have been developed by Moms et al.’ and Liou and Moms6 for a two-dimensional shear layer 
and by Viswanathan and Morris23 for a circular jet. The encouraging results of these turbulence models 
suggest that the present hybrid numerical method could be used to develop turbulence closure schemes 
for jets with arbitrary exit geometries. 
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